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Abstract— In this paper, we investigated the use of deep 

neural networks to perform segmentation and prediction of 
lung cancer tumor regions, via screening Computed 
Tomography (CT) scans. In order to achieve satisfactory 
results, we have adopted U-Net, a deep neural network, for 
the segmentation of tumor regions in the CT scans. U-Net was 
designed for medical image segmentation. With the 
segmentation results generated by U-Net, some false-positive 
segments will appear. Therefore, a process similar to radiomic 
analysis was carried out to rectify this issue. After evaluating 
the performance of various networks, ResNet-18 can achieve 
the best performance, in terms of reducing the false positives. 
Using the extracted deep features for classification, each 
segmented region generated by U-Net is classified as to 
whether it contains a real tumor or not. With the use of U-Net 
only, the four evaluation metrics, i.e., dice coefficient, mean 
surface distance, Hausdorff distance, and patient-wise 
accuracy, are 0.5471, 12.505, 29.336 and 90%, respectively. 
After using the radiomic analysis, the four metrics become 
0.592, 9.786, 20.061, and 90%, respectively. 
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I. INTRODUCTION 
Medical diagnosis, based on images, involves a huge 

amount of data. The interpretation of such a large amount 
of data has always relied on the experience of the 
radiologist, and thus has made it a very time-consuming 
process. This outlines the fact that automated analysis and 
diagnosis of medical images is crucial. In this paper, 
efficient methods have been studied for the segmentation 
and prediction of lung cancer tumor regions via screening 
computed tomography (CT) scans. 

To achieve an accurate segmentation and prediction 
performance, efficient segmentation and prediction 
methods for tumor detection are indispensable. Our 
proposed method uses a deep neural network for 
segmentation, followed by a radiomic analysis [1] for 
removing false positives from the segmentation results to 
further improve the accuracy. In order to achieve better 
performance, another deep neural network is employed. In 
Section II, we will discuss the methods we considered, and 
those finally used in our tumor-segmentation method. The 
experiment set-up and results will be presented in Section 
III, and a conclusion will be given in Section IV. 

II. METHODS FOR LUNG TUMOR REGION DETECTION 
AND SEGMENTATION 

It is a challenging task to detect and segment lung 
tumor regions in CT scans. We employed various learning 
algorithms, which were trained based on the ground truth 
images of a data set. In this section, we will describe the 
techniques used in our method, including the deep neural 
networks and radiomic analysis. 

A. Deep Neural Network for Tumor Region Segmentation 
To detect and segment a tumor region, various types of 

deep networks can be adopted. Two approaches can be used 
for this purpose. The first one is to use object-detection 
methods, including the Faster RCNN [2], SSD [3], and 
Yolo [4], to locate the tumor regions first, followed by 
segmentation. The second approach is to perform detection 
and segmentation from end to end, with the potential deep 
models for this purpose including Mask RCNN [5], 
DeepLab [6], and U-Net [7]. We have tested the 
performance of all the models. In conclusion, we have 
found that U-Net achieves the best performance for this 
task. 

The U-Net model [7], which was proposed by 
Ronneberger et al., has shown outstanding performance on 
segmentation task of medical images. As this model was 
designed for medical image segmentation, it could also 
achieve a better performance in tumor region segmentation. 
With the original U-Net structure, we have made some 
minor modifications, so that the network can be adapted for 
lung tumor segmentation. The structure used in the 
challenge is shown in Fig. 1. Each blue block represents 
two convolutional layers, with 3×3 filters, separately 
followed by a rectified linear unit (ReLU) layer. The white 
block denotes the copied feature maps. Each downward 
arrow represents a 2×2 max pooling layer, with a stride of 
2. In this step, the number of feature channels is doubled. 
The upward arrow denotes a 2×2 upsampling convolution, 
while the number of feature maps will be halved. Finally, a 
1×1 convolution is used, followed by a sigmoid layer, to 
normalize the results. With such a structure, the output 
segmentation map will maintain a similar size to the input 
slice. Furthermore, U-Net can extract features on different 
levels and can achieve good performance with a limited 
amount of training data. 



 

Fig. 1. Structure of the U-Net model (modified from [7]). 

 

Loss Function: As with most medical scans, the tumor of 
interest usually occupies only a very small region in an 
image. If the cross-entropy loss, as in [7], is used for 
learning, the final segmentation map will tend to be the 
background. In our network, we use the dice loss [8], which 
is based on dice coefficient, as our training loss function. 
The reason for using the dice loss is because it focuses on 
foreground regions during training. The dice coefficient 
loss function D is given as follows: 

 𝐷𝐷 = 2∑ 𝑝𝑝𝑖𝑖𝑔𝑔𝑖𝑖
𝑁𝑁
𝑖𝑖=1

∑ 𝑝𝑝𝑖𝑖𝑁𝑁
𝑖𝑖=1 +∑ 𝑔𝑔𝑖𝑖𝑁𝑁

𝑖𝑖=1
, (1) 

where N is the number of pixels in a CT slide, and 𝑝𝑝𝑖𝑖  and 
𝑔𝑔𝑖𝑖  are the predicted binary segmentation result and the 
binary ground truth for pixel i in the CT slide. With the use 
of Pytorch, backward propagation can be implemented 
easily. 

Training: In the training stage, we firstly extracted slices 
from the dicom files provided in the data set. There are 
approximately 100 slices for each patient. We filtered all 
the slices and only kept those that contained a tumor for the 
training purpose. The information about all the tumor 
positions was saved in terms of the x and y coordinates. We 
drew the masks for all the images, according to the tumor 
coordinates, and each mask and the corresponding image 
formed a training pair. In order to accelerate the training 
and maximize GPU memory usage, we trained the network 
with 100 epochs and a batch size of 10. The validation data 
set was subsequently used to confirm our results by 
calculating the dice coefficient so as to avoid overfitting. 
To improve the final result, we adopted the Adam optimizer 
[9], with a learning rate of 0.01. 

Image Augmentation: To train the network, we had the 
lung slices from 260 different patients. Due to the limited 
number of samples in the training data set, data 
augmentation was adopted to enlarge the size of the 
training data set. The size of the images is 512×512. We 
randomly cropped the boundary of the images with a 
random boundary size and then resized them to 512×512. 
The images were also rotated and flipped. The total number 
of samples for training, after augmentation, is 70,000. 

B. Radiomic Analysis 
Radiomics [1], in the field of medical study, refers to 

the use of a large number of quantitative features from 
medical images for the comprehensive quantification of 
tumor phenotypes. In [1], 440 features, which were 
extracted from the CT data of 1,019 patients with lung and 
head-and-neck cancer, were used to quantify tumor image 
intensity, shape, and texture. As there are a number of false 
positives in the segmentation results obtained by the U-Net 
deep learning model, a radiomic analysis is important for 
removing the false-positive results and preserving the true-
positive results as many as possible. In our study, we used 
different visual or deep features to represent tumor regions 
and then employed a classifier to determine whether a 
segmented region was a tumor or not. 

It is very time consuming if many features are to be 
extracted from the images. In our study, we first used some 
of the features in [1], as well as the features used for facial-
image analysis [10]. All of these are handcrafted features, 
whose performance for tumor detection and classification 
were found not optimal. In order to achieve better accuracy, 
deep features were applied for radiomic analysis. 
Therefore, we used a deep neural network to determine if 
each segmented region from U-Net was a true tumor region 
or not. Since different network models have different 
characteristics and levels of performance in tumor 
classification, we have evaluated the AlexNet [11] and 
ResNet-18 [12] neural network models for our task. We 
found that the pre-trained ResNet-18 can achieve the best 
performance for removing the false-positive results and, at 
the same time, keeping the true-positive results. 

ResNet-18 Classification: The classifier is the main 
component in a statistical pattern-recognition system. The 
regions, where the deep features will be extracted and used 
for classification, depend on the segmentation results from 
U-Net. Fig. 2 shows two segmentation results generated by 
U-Net. We consider a 170×170 square window centered at 
each of the segmented regions, where deep features are 
extracted and then classified. The size of the window is 
1.15 times the largest size of the tumor in the data set, 
which is large enough to cover all of the tumors. With the 
original ResNet-18 structure, the number of the output of 
its last fully-connected layer is changed from 1000 to 2 to 
classify whether a region has a tumor or not. 

 
 
Fig. 2. The region surrounding a potential segmented tumor is considered 
for feature extraction and classification, for removing false positives as 
well as preserving true positives. The window size is 170×170. 

 

   



III. EXPERIMENT SETUP AND RESULTS 
The data sets used in our experiments come from the 

2018 IEEE SPS Video and Image Processing (VIP) Cup 
competition [13]. The training data set contains the data 
from 260 patients, with their labels provided. The 
validation and test data sets contain 40 subjects each, but 
only the validation data set is provided with labels. In our 
experiments, we evaluated the performance of our 
proposed approach, with the U-Net only, then with 
radiomic analysis based on AlexNet and ResNet-18. Six 
evaluation metrics were measured – the dice coefficient, 
mean surface distance, 95% Hausdorff distance, slice-wise 
missing rate, false-alarm rate, and CT-scan-based accuracy. 
Their definitions are given in the Appendix. 

A. Results based on U-Net 
We evaluated our model with the validation data set by 

calculating the dice coefficient, mean surface distance and 
95% Hausdorff distance, as well as the slice-wise missing 
rate and false-alarm rate. Since it is impossible to calculate 
the first three metrics on those slices without a tumor, we 
only focused on the slices with a tumor. The results, in 
terms of dice coefficient, mean surface distance, 95% 
Hausdorff distance, slice-wise missing rate, and false-
alarm rate, based on U-Net only, were 0.547, 12.505, 
29.336, 25.4%, and 33.9%, respectively. The slice-wise 
missing rate is defined as the percentage of missed 
detection of slices with a tumor. Although the slice-wise 
missing rate is 25.4%, we can make the decision whether a 
patient has a tumor or not based on all the slices in a CT 
scan. For the CT scan of a patient, if there are a certain 
number of consecutive slices containing a predicted mask 
and the Intersection-over-Union (IoU) between the masks 
of two adjacent slices reaches a certain degree, then the 
patient is considered to have a tumor. In this case, by 
considering 3 consecutive slices, the accuracy is equal to 
90.0%, or the missed detection is reduced from 25.4% to 
10%. We call this accuracy CT-scan-based accuracy. 

According to the above results, we can find that the 
false-alarm rate is very high. Deep feature extraction and 
classification are necessary to further improve the overall 
performance in the next step. 

B. Radiomic Analysis based on AlexNet and ResNet-18 
In our study, we used pre-trained AlexNet and ResNet-

18 to perform deep feature extraction and classification to 
remove false positives. To fine-tune the pre-trained 
AlexNet and ResNet-18, we kept all the positive samples 
and randomly selected negative samples. The ratio of 
positive samples and negative samples was 1:3. Adam 
optimizer [9] with a learning rate of 0.0001 was adopted to 
improve the result. 

By applying the trained AlexNet and ResNet-18 to the 
segmentation results from U-Net, the dice coefficient, 
mean surface distance, 95% Hausdorff distance, slice-wise 
missing rate, false-alarm rate, and CT-scan-based accuracy 
are 0.611, 8.137, 18.143, 30.3%, 11.1%, and 85.0%, 
respectively, for AlexNet, and 0.592, 8.835, 21.176, 26.4%, 
15.6% and 85.0%, respectively, for ResNet-18, 
respectively. With the deep feature extraction and 
classification performed by pretrained network, we can see 
that the false-alarm rate is reduced significantly, while the 
missing rate is almost the same. 

   
(a) 

   
(b) 

   
(c) 

   
(d) 

 

Fig. 3. Segmentation results: (a) original images, (b) ground truth, (c) 
results generated by U-Net, and (d) results after radiomic analysis. 

 

Although the missing rate and false-alarm rate can both 
reflect the accuracy of the algorithm, a low missing rate is 
more important than a low false alarm rate when evaluating 
a tumor detection algorithm. This is because missing a true 
tumor would cause severe harm to a patient, compared to 
detecting a false tumor. As ResNet-18 can achieve a lower 
missing rate and a higher accuracy, when compared to 
AlexNet, ResNet-18 is adopted in our algorithm. 

Fig. 3 shows some of the segmentation results on the 
validation data set. The first row shows the images of some 
CT scans. The second row illustrates the ground truth, in 
the form of a binary mask, of the tumor regions in the 
images. The third row shows the segmentation results, 
generated by our U-Net. When compared to the ground 
truth, some false positives can be observed. The fourth row 
shows the results after a radiomic analysis based on 
ResNet-18. Some false positives were removed. 

C. Fine-tuning U-Net with Radiomic Analysis 
The result from radiomic analysis shows that the 

classifier can significantly reduce the false-alarm rate by 
correctly removing some false-positive masks. To improve 
the accuracy, we fine-tune U-Net again to increase the true-
positive rate, while the false-alarm rate remains unchanged. 
We mainly focus on adjusting the threshold, used in U-Net, 
for deciding whether an output pixel is a tumor pixel or not. 
As shown in Fig. 4, by reducing the value of the threshold, 
we can reduce the slice-wise missing rate. However, there 
are more false positives. With ResNet-18, most of the new 
false-positive masks can be removed, so the false-alarm 
rate can be maintained. After evaluating the results, we 



found that by using ResNet-18 and setting the U-Net 
threshold to 0.0001, our algorithm can achieve the best 
overall performance. The overall results on the validation 
data set, in terms of dice coefficient, mean surface distance, 
95% Hausdorff distance, slice-wise missing rate, false-
alarm rate, and CT-scan-based accuracy, are 0.563, 10.896, 
26.052, 23.3%, 24.6%, and 90.0%, respectively. The 
performance of our proposed method using U-Net only, U-
Net and AlexNet, and U-Net and ResNet-18, with the 
threshold set at 0.5 and 0.0001 are tabulated in Tables 1 and 
2, respectively. 

 

Fig. 4. Slice-wise missing rate with different U-Net thresholds. 
 

TABLE. 1 PERFORMANCE OF OUR PROPOSED ALGORITHM AT DIFFERENT 
STAGES WITH THRESHOLD OF U-NET = 0.5 

 U-Net only U-Net and 
AlexNet 

U-Net and 
ResNet-18 

Dice coefficient 0.547 0.611 0.592 
Mean surface 
distance 

12.505 8.137 8.835 

95% Hausdorff 
distance 

29.336 18.143 21.176 

Slice-wise 
missing rate 

25.4% 30.3% 26.4% 

False-alarm rate 33.9% 11.1% 15.6% 
CT-scan-based 
Accuracy 

90.0% 85% 85% 

 
TABLE. 2 PERFORMANCE OF OUR PROPOSED ALGORITHM AT DIFFERENT 
STAGES WITH THRESHOLD OF U-NET = 0.0001 

 U-Net only U-Net and 
AlexNet 

U-Net and 
ResNet-18 

Dice coefficient 0.475 0.588 0.563 
Mean surface 
distance 

27.014 9.336 10.896 

95% Hausdorff 
distance 

75.978 21.243 26.052 

Slice-wise 
missing rate 

22.2% 28.7% 23.3% 

False-alarm rate 75.2% 17.6% 24.6% 
CT-scan-based 
Accuracy 

95.0% 82.5% 90% 

 

IV. CONCLUSION 
We have implemented a method, based on a deep neural 

network and a radiomic analysis, for segmenting the tumor 
regions in lung CT scans. We have evaluated different deep 
models, including U-Net, DeepLab, Mask RCNN, etc., and 
found that U-Net can achieve the best performance. For the 
radiomic analysis, different types of features for shape and 
texture representation, features used for recognition, and 
deep features, have all been considered. Experimental 
results show that the deep feature can achieve the best 
performance. After evaluated several deep neural networks 
for classification, we found that ResNet-18 can achieve the 
best classification performance. With the use of the best 
methods evaluated, our method can achieve the accuracy of 
90%. 
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Appendix - Evaluation Metrics  
  

To evaluate the performance, we used 6 evaluation metrics: 
Dice Score, Mean Surface Distance, 95% Hausdorff 
Distance, Slice-wise Missing Rate, False-Alarm Rate, and 
CT-scan-based Accuracy. The overall score for each of 
these metrics is calculated in our experiments.  
 

A. Dice Coefficient 
Dice coefficient calculates two times the intersection area 
of the ground truth and the predicted tumor regions. Dice 
coefficient will only consider those slices with a tumor in 
the ground truth. For those slices without predicted tumor 
regions, the dice coefficient for that single image will be 
counted as 0. The equation for those slices with a tumor in 
both the ground truth and the predicted image utilized the 
following equation: 
 

𝐷𝐷 =
2|𝑋𝑋| ∩ |𝑌𝑌|
|𝑋𝑋| + |𝑌𝑌|

 

 

B. Mean Surface Distance and 95% Hausdorff Distance: 
Because of the definition of these two metrics have its 
limitation, we only consider those slices having tumor in 
both the ground truth and the predicted mask. 
 
The mean surface distance is calculated through the 
following two equations: 
 

𝑑𝑑𝐻𝐻,𝑎𝑎𝑎𝑎𝑔𝑔(𝑋𝑋,𝑌𝑌) =  
1

|𝑋𝑋|
�min

𝑦𝑦∈𝑌𝑌
𝑑𝑑(𝑥𝑥,𝑦𝑦)

𝑥𝑥∈𝑋𝑋

 

𝑑𝑑𝐻𝐻,𝑎𝑎𝑎𝑎𝑔𝑔(𝑋𝑋,𝑌𝑌) =  
𝑑𝑑𝐻𝐻,𝑎𝑎𝑎𝑎𝑔𝑔(𝑋𝑋,𝑌𝑌) + 𝑑𝑑𝐻𝐻,𝑎𝑎𝑎𝑎𝑔𝑔(𝑌𝑌,𝑋𝑋)

2
 

 
The 95% Hausdorff Distance is calculated through the 
following two equations: 
 

𝑑𝑑𝐻𝐻,𝑟𝑟(𝑋𝑋,𝑌𝑌)  = 𝐾𝐾𝑟𝑟(min
𝑦𝑦∈𝑌𝑌

𝑑𝑑(𝑥𝑥,𝑦𝑦)) ∀𝑥𝑥 ∈ 𝑋𝑋 

𝑑𝑑𝐻𝐻,𝑟𝑟(𝑋𝑋,𝑌𝑌)  =  
𝑑𝑑𝐻𝐻,𝑟𝑟(𝑋𝑋,𝑌𝑌) + 𝑑𝑑𝐻𝐻,𝑟𝑟(𝑌𝑌,𝑋𝑋)

2
 

C. Slice-wise Missing Rate: 
A slice is counted as a miss if it has a tumor but cannot be 
detected, or if the value of Intersection-over-Union (IoU) 
between the detected mask and ground truth is lower than 
0.1. We have utilized the following equation to calculate 
the missing rate: 
 

MR =  
number of false negative masks in a CT scan

number of masks with a tumor in the CT scan
. 

 

D. False-Alarm Rate (FAR) or False-Positive Rate: 
The false-alarm rate is a measure of the number of slices 
that have no tumor but are detected to have a tumor. It is 
calculated as follows: 
 

FAR =
no. of false positive masks in a CT scan

no. of ground − truth masks without tumor 
in a CT scan

 

 

E. CT-scan-based Accuracy 
 
For each patient, if 3 consecutive slices are detected as true 
positives, and the IoU value between any two of the 
adjacent slices is larger than 0.5, then the patient or the CT 
scan is declared to have a tumor. The accuracy rate is 
determined using the following equation: 
 

Accuracy =  
number of patients with tumor detected

number of patients with a tumor
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